

GHOST

Group of Horribly Optimistic Statisticians

Piotr Baryczkowski, Sebastian Szczepaniak

Plan

- 1. Introduction
 - 1.1. Motivation
 - 1.2. Objectives
 - 1.3. Challenges
- 2. Edge Al
- 3. ANN
 - 3.1. Dataset
 - 3.2. Architectures
- 4. CMOS preprocessor
- 5. Summary and results

Plan

- 1. Introduction
- 2. Artificial Intelligence on the Edge
- 3. Artificial Neural Network
- 4. CMOS preprocessor
- 5. Summary and results

Motivation

- Increasing popularity of edge computing
- Rise of IoT
- Network congestion and bandwidth limitations

Objectives

- 1. Implement and train an ANN
- 2. Design a CMOS preprocessor that will behave identically to the ANN
- 3. Optimize both the ANN and the preprocessor to reduce overall complexity

Challenges

- Performance-complexity trade-off
- Weight constraints
- Custom activation function as a requirement
- ANN -> CMOS conversion

နှင့

GHOST Group of Horribly Optimistic Statisticians

Edge Al

Edge vs Cloud Computing

- Both approaches leverage delegating processing to external nodes / devices
 - ... though there are substantial differences
- Both approaches are commonly used in the Big Data world

Why bother?

- Rapid development in AI accelerating technologies
- Privacy and security concerns
- Offline capabilities
- Not all ML problems require complex models

"The simpler it is, the better I like it." ~ Peter Lynch

င္နာရ

GHOST Group of Horribly Optimistic Statisticians

Artificial Neural Network

ANN - Dataset

- ECG-ID database, available on PhysioNet (manual adjustments were necessary)
- ECG signals with windows classified as heartbeat or non-heartbeat
- Window size and sampling frequency as hyperparameters

ANN - Architecture

- One hidden layer
- Custom sigmoidal activation function

CMOS Preprocessor

Hardware Complexity

Technology:

- TSMC Taiwan Semiconductor 65 nm CMOS technology
- Weak inversion mode

Hardware metrics:

- Number of transistors
- Active Area [mm^2]
- Maximum processing speed [samples / s]
- Maximum power consumption [nW]

Preprocessor - architecture

- Current Mirror (CM)
- Reconfigurable Current Mirror (RCM)
- Sigmoidal Function Shaping Module (SFSM)
- Common Mode Rejection Ratio (CMRR)

GHOST

Group of Horribly Optimistic Statisticians

GHOST Group of Horribly Optimistic Statisticians

0-0-

Conclusions

- We successfully implemented a Deep Learning model with high accuracy and minimal number of parameters.
- It is feasible to develop CMOS preprocessor based on Neural Networks without experiencing a significant loss of accuracy.
- The ASIC design can utilize human energy-harvesting cells for power generation.

GHOST

Group of Horribly Optimistic Statisticians

Thank you for your attention