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Cosmic Microwave Background

The remnant electromagnetic radiation from the Big Bang, which we can still see 13.8 
billion years later



Cosmic Microwave Background

Bucher+2015Image credit: NASA
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Anisotropy Formalism

• Fluctuations of CMB temperature in different directions on the sky:

• Spherical harmonic decomposition:

• We define the angular power spectrum as:
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Cosmic Microwave Background

Hu, Sugiyama & Silk (1995)

The universe today



ØCMB importance in understanding the Universe

ØPrecision in CMB anisotropy measurements, especially in polarization

Ø Characterize and subtract contaminants that “hide” the CMB signal:

ØDiffuse emissions in the sky

ØExtragalactic point sources (PS) 

ØDevelop new methods looking for better performance

Component Separation



Component Separation

Image credit: ESA



Component Separation
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Planck 2018 I

Component Separation

Total intensity 



Planck 2018 IBeyond Planck 2023 XIV

Component Separation

Polarization



Component Separation
Planck 2015 IXFitting model to set of 

obs w/i standard 
Bayesian parametric 
framework (parameters 
and priors) 

Linear combination of 
maps w/ minimum 

variance using a basis of 
spherical wavelts 

(needlets)

CMB harmonic 
coefficients by weighted 

linear combination of the 
input maps harmonic 

coefficients
𝑠!" = 𝑤!#𝑥!"

Construct templates tj(x) from two 
close channels, 𝛼j by minimizing 
the variance outside mask 
𝑇$ 𝑥, 𝑣 = 𝑑 𝑥, 𝑣 − ∑%&'

(! 𝛼% 𝑡% (𝑥)



FFP8 simulations

Planck 2015 IX

Component Separation



Ø...Unfortunately, many of the component separation techniques that are 
generally used to separate diffuse Galactic foregrounds are not well suited to 
deal with PS…

ØPS: Distant galaxies seen as point-like objects through the observational beam

ØAlbeit “clustered”, their distribution is isotropic on very large scales (≳100 Mpc)

ØTheir contribution reduced by detecting and removing them from the maps

ØAn alternative is to MASK them

Point Sources



Point Sources

Planck 2015 XXVI

Bonavera+17



Point Sources

Planck 2015 XXVI

The Second Planck Catalogue of Compact Sources



Gonzalez-Nuevo+2006
Lopez-Caniego+2006

Bk power 
spectrum

Fourier transform 
of src profile(beam)

MHW family

Matched Filter

Point Sources

Detection



Point Sources

Masking



Looking for:
Ø Better performance 
Ø No ringing 
Ø No border effect
Ø No mask needed
Ø No bk power spectrum 

estimation
Ø More flexible and authomatic

Realistic simulations needed: 
Ø Patches of the sky
Ø CMB signal (label) 
Ø Galactic thermal dust and 

synchrotron emission
Ø PS radio (label) and IR 

background 
Ø Instrumental white noise

Neural Network approach



Simulations - T 



Simulations - Q 



Simulations - U 



PoSeIDoN
Point Source Image Detection Network 

Bonavera+21

Convolutional block: 6 layers 
8-16-64-128-256-512 feature maps

Deconvolutional block: 6 layer
256-128-64-16-8-1 feature maps

Paddding Same
Leaky ReLU
MSE loss function
50 epochs



PoSeIDoN

Simulations @217 GHz: 
Patch of 32 x 32 pixels
50 000 training set (total & PS)
5 000 validation set

Bonavera+21

Catalogue: 
searching peaks (i.e. local maxima)
• above 𝜎MHW2 intensity threshold (PoSeIDoN)
• above 4 𝜎MHW2 (MHW2)



PoSeIDoN

Bonavera+21

ØPoSeIDoN provides more reliable results (i.e. a lower number of spurious sources)
ØPoSeIDoN does not have border effects like any filtering approach
Øgood PoSeIDoN performance even at the freq.s where it was not trained

vFlux density estimation is not optimal WRT the MHW2, but best option for blind detection



MultiPoSeIDoN

6 convolutional & pooling layers 
9-18-72-144-288-576 feature maps
Learning the PS WRT the background

6 deconvolutional & pooling layers
288-144-72-18-9-3 feature maps
PS segmantation from the total map

Sub-sampling factor of 2
Paddding  Same
Leaky ReLU
MSE loss function
AdaGrad optimizer
Minibatch of 32 sample
500 epochs

Casas+22a



MultiPoSeIDoN

Simulations:
143, 217 & 353 GHz
PS flux density scaling w/ freq
Patch of 128 x 128 pixels (90”)
50 000 training set (total & PS)
5 000 validation set

Catalogue: 
searching peaks 
(i.e. local maxima)
• NN above 60 mJy threshold 
• MTXF 4𝜎

Casas+22a



MultiPoSeIDoN MultiPoSeIDoN performs better than the MTXFs
Ø Similar completeness @ 143 & 217 GHz
ØBetter completeness @ 353 GHz
ØBetter in number of spurious sources

Casas+22a

@143-217-353 GHz
90% completeness level 
• NN 79-71-60 mJy
• MTXF 84-79-123 mJy
Spurious source
• NN ∼20% S<100 mJy
• MTXF > 20% S< 180-

400-1200 mJy



MultiPoSeIDoN

Ø MultiPoSeIDoN better than PoSeIDoN, recovering flux density of fainter PS w/ lower 
relative error

Ø Thanks to the increasing of the training information, it learns the different correlations 
between the elements in the simulations due to their spectral behaviors

Casas+22a



POSPEN

Casas+23

leaky ReLU
AdaGrad optimiser
500 epochs
batch size of 16
MSE loss function

1st block read the input 32x32 patch
Five convolutional blocks, formed by
8-32-64-128-256 filters

two layers of 128 and 1 neurons 
converting info to numerical 
values

POint Source Polarization Estimation Network



POSPEN

Polarization simulations (P Q U)
@217 GHz
32 × 32 pixels of 90”
a central injected PS 
(non-blind method)
+ contaminants & CMB 

10 000 training set (label PS flux)
1 000 validation set

Casas+23



POSPEN

POSPEN appears to be promising for estimating polarization flux density (non-blind way)
Ø It well recovers the polarization flux density of sources above 80 mJy
Ø Relative error of 30% in most of the flux-density intervals

Casas+23



POSPEN

The polarization angle (𝜓) can be 
estimated even when Q is well estimated 
but not its corresponding U, or vice versa

POSPEN appears to be promising for 
estimating polarization flux density and angle 
in a non-blind way

Casas+23

Casas+23

𝜓 = tan'( 𝑈/𝑄
𝑄 = 𝑃 cos𝜓
U = 𝑃 sin𝜓



NN4CMB

Ø NN better performance in PS WRT filters 

Ø Same expected in CMB recovery WRT “classical” methods

Ø In particular:

Ø Better background removal expected

Ø Better noise removal expected



CENN - T

Casas+22b

CMB Extraction Neural Network
In: 3 patches
Out: 1 patch w/ clan CMB

6 convolutional blocks:
layers w/
8-16-64-128-256-512 #filters

6 deconvolutional blocks:
layers w/
256-128-64-16-8-1 #filters

500 epochs
Mini-batch 32
MSE loss function
Subsampling factor of 2
Padding type Same
leaky ReLU



CENN - T

• layers to connect the convolutional and deconvolutional blocks, doubling the space of feature maps before each 
deconvolutional block

• these layers help to predict low-level features with the deconvolutional blocks by taking into account high-level 
features inferred by the convolutional blocks

• the addition of these layers is related to the task of predicting small-scale regions of the CMB signal by considering 
already inferred large-scale structures

Casas+22b



CENN - T
Simulations @ 143, 217 & 353 GHz
PS flux density scaling w/ freq
256 x 256 pixels 90”

Casas+22b

60 000 training set (labels CMB @ 217 GHz)
validation set: 
• 6 000 all sky
• 2 000 x 3 regions



CENN - T
Mean power spectrum of the residuals + foregrounds
(difference between input and output CMB)
for each region and for the whole sky
Ø reasonable residuals also in contaminated regions

Mean power spectra of the input and output CMB 
Difference of 13±113 𝜇 K2 for l ≤4000
Ø CENN reliable also @ l> 2500
Ø PS contamination very small, only affects l∼2000

Casas+22b



CENN - Pol

Casas+ subA&A

4 convolutional blocks:
8-16-64-128 #filters

4 deconvolutional blocks
64-16-8-1 #filters 

Convol. connected to deconv. 
to add fine-grained features
padding type Same
activation function leaky ReLU
Final layer MSE loss function
AdaGrad optimizer
500 epochs



CENN - Pol

Simulations in  Q and U
@ 100, 143 & 217 GHz
256×256 pixels & 90” pixel size

10 000 training set 
(labels CMB @ 217 GHz)
1 000 validating set

Casas+ subA&A



CENN - Pol
Reasonable residuals:
E recovery w/ 
10−1-10−2 μK2 
B recovery w/ 
2×10−3 μK2 at l < 400
5×10−4 μK2 at l > 400

B-mode recovery 
sensitive to the use of
a different foreground model

Casas+ subA&A



POSPEN to real data
Example of 3 PCCS2 srcs @ 217 GHz in polarization Example of 3 simulated srcs @ 217 GHz in polarization



POSPEN to real data

Bonavera+ TBS

POSPEN applied to the 11 srcs in the 
PCCS2

• Trained in P 
• Trained in Q & U and 𝑃!" = 𝑄# + 𝑈#



POSPEN to real data

𝜓)* =
1
2 tan

+' −𝑈/𝑄

𝑄 = 𝑃 cos 2𝜓

U = −𝑃 sin 2𝜓

IAU convention

𝜓,* 	=
1
2
sin+' −𝑈/𝑃

𝜓,) 	=
1
2
cos+' 𝑄/𝑃

Bonavera+ TBS



POSPEN to real data

Bin [Jy] # PS PQU P

𝜇 𝜎 𝜇 𝜎
>0.5 16 1.72 9.60 1.18 2.43 

0.3-0.5 27 -7.38 11.68 -2.22 6.03 

0.2-0.3 32 -12.54 17.50 -3.35 12.07 

0.15-0.2 34 -21.78 27.89 -5.55 13.51 

0.1-0.15 79 -29.95 31.03 -5.23 20.54 

0.08-0.1 51 -33.79 35.65 -15.03 20.84 

0.06-0.08 89 -31.49 45.02 -12.51 29.21 

0.04-0.06 123 -26.20 44.59 -12.30 31.59 

0.02-0.04 255 -6.78 57.44 6.79 42.14 

0.0-0.02 294 136.23 215.39 109.42 127.99 

Relative errors to unbias the results
Same for Q and U

Bonavera+ TBS



POSPEN to real data

Bin [Jy] # PS PQU P

𝜇 𝜎 𝜇 𝜎
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0.2-0.3 32 -12.54 17.50 -3.35 12.07 

0.15-0.2 34 -21.78 27.89 -5.55 13.51 

0.1-0.15 79 -29.95 31.03 -5.23 20.54 

0.08-0.1 51 -33.79 35.65 -15.03 20.84 

0.06-0.08 89 -31.49 45.02 -12.51 29.21 

0.04-0.06 123 -26.20 44.59 -12.30 31.59 

0.02-0.04 255 -6.78 57.44 6.79 42.14 
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Relative errors to unbias the results
Same for Q and U
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POSPEN to real data

Bin [Jy] # PS PQU P

𝜇 𝜎 𝜇 𝜎
>0.5 16 1.72 9.60 1.18 2.43 

0.3-0.5 27 -7.38 11.68 -2.22 6.03 
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Same for Q and U

Bonavera+ TBS



original recovered unbiased

Bonavera+ TBS

POSPEN to real data

P vs PQU estimations (srcs w/ P>40 mJy)



POSPEN applied to PCCS2 positions
Selection Praw > 40 mJy: 63 sources (>5 times PCCS2 srcs)

POSPEN to real data

Bonavera+ TBSP estimations comparisons Pol. angle estimations comparison



Conclusions

ØNN reliable methods for PS detection and CMB recovery in T and P

ØNN reliable methods also for foreground characterization in T and P

ØMore flexible and automatic methods

ØVery suitable for future experiments providing larger amounts of data

ØNot a “filter” (no Fourier space), then no ringing or border effects



Conclusions – PS

Simulations
• Lower flux densities limit: larger 

number of detected PS
• Smaller number of spurious 

detections
• Multi-frequency methodology, very 

important for spectral 
characterization of galaxies
• Estimation of polarization angle for 

even not so bright PS

POSPEN 4 Planck
• Not stightforward application
• Discrepancies bw P & PQU ?
• (hot pixels issue?)

142 mJy 47 mJy23 mJy



Conclusions - CMB

• No PS mask needed
• No mask needed to avoid strong Galactic contamination regions
• Better performance at small scales
• Best performance when trained w/ lower noise
• Possible bias when trained w/ no accurate simulated sky 

components (also for traditional methods):
ØTrain various NN w/ different simulated diffuse 

components and use Ensemble Learning


