
Chasing Efficiency in the 
Era of Generative-AI and 
Large Language Models

Halima Bouzidi, PhD
Research Fellow in Trustworthy AI
The Queen’s University of Belfast, UK
h.bouzidi@qub.ac.uk

GHOST Day: AMLC 2024
05-06 April 2024 



Agenda

02

- Introduction: A Quest for Efficiency
- Understanding the LLM Landscape
- LLM Inference Challenges

- Software-Level Optimization
- Pay More Attention to Attention Layers!
- To compress or not to compress?
- Dynamic Model Scaling

- Hardware-Level Optimization
- Parallel Computing
- Domain-specific and IMC Accelerators

- Conclusion



LLM is the New Fuel of Today’s Digital Landscape

- The history of LLMs is built upon 

advancements in NLP and ML.

- Progress in NN architectures, 

availability of datasets, and 

computational power are the 

magic recipe of today’s LLMs.

Effective LLMs need more scaling 

(data, computation, budget)

Larger == better performance

On-device LLM is the key to enable 

future generations of smart IoT

03

Large Language Model
- Foundational Model -

Text

Voice

Signals

Images

Training Adaptation

Instructions 
Following

Object
Recognition

Image
Captionning

Question
Answering

Encapsulating such interdisciplinary knowledge requires
Billions of Parameters



When GenAI outgrows Edge/Mobile Hardware Limits

Data from OurWorldinData:
https://ourworldindata.org/grapher/artificial-intelligence-parameter-count

“The exponential growth in LLM applications and 
complexity has outstripped the hardware scaling 

capabilities of Moore's law”

Doubling every 2 months

Doubling every 2 years

“Hardware Technology Scaling is all you Need”

Data from AMSL’s Investor Day Event:
https://leimao.github.io/downloads/blog/2023-04-10-Moore-Law/ASML-Investor-Day-2021.pdf

“Physical and Thermal Limits are your Constraints”

However

Stagnation?

04

What alternatives do we have to 
efficiently run the emerging LLMs on  

Mobile hardware devices?



LLM Architecture and Computing Scaling

The compute has two separate components:

- Linear terms: Vector-matrix multiplication w/ 

the W matrix (fixed cost per time step)

- Attention terms: Matrix-vector multiplication 

w/ the K key matrix (scales with # of tokens)

An Example: Llama-2 7B

- Linear terms: 7B MACs per token (1-MAC 

   per parameter)

- Attention and linear costs are approximately  

equal after ≅ 400 tokens.

- Mobile Performance: on Snapdragon 8 Gen 3, 

Llama-2 7B can be run with 20 token/second

05

Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint 
arXiv:2402.16363 (2024).
Llama-2 7B: https://huggingface.co/meta-llama/Llama-2-7b



LLM Architecture and Computing Scaling

The compute has two separate components:

- Linear terms: Vector-matrix multiplication w/ 

the W matrix (fixed cost per time step)

- Attention terms: Matrix-vector multiplication 

w/ the K key matrix (scales with # of tokens)

An Example: Llama-2 7B

- Linear terms: 7B MACs per token (1-MAC 

   per parameter)

- Attention and linear costs are approximately  

equal after ≅ 400 tokens.

- Mobile Performance: on Snapdragon 8 Gen 3, 

Llama-2 7B can be run with 20 token/second

06

Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint 
arXiv:2402.16363 (2024).
Llama-2 7B: https://huggingface.co/meta-llama/Llama-2-7b

However, for real-time mobile LLM applications we require 
~ 2.5 words / second >= 3.3 tokens / second

More Optimization is needed!!



The Compute-Memory Dilemma in LLMs

- Most layers are compute bound in the Prefill 

  stage, where the same layers become 

  memory-bound in the decode stage.

- All layers in the Decode stage are memory 

   bound as they need extensive read and write 

   operation from memory.

Considerations before LLMs deployment:

- Computation Capability: Support LLM op, mixed 

   precision, and high computational power.

- Memory size/bandwidth: Scaling KV cache (text), 

   multi-tasking (batch size), data movement.

- Harmony: computation and memory capacities 

   should be well aligned w.r.t. LLM requirements.

07

Roofline Model on A6000 GPU

Execution of an operation 
(linear/non-linear) on hardware.

Analysis of Llama-2 7B layers on 
the A6000 GPU from NVIDIA

Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023).
Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).



The Compute-Memory Dilemma in LLMs

- Most layers are compute bound in the Prefill 

  stage, where the same layers become 

  memory-bound in the decode stage.

- All layers in the Decode stage are memory 

   bound as they need extensive read and write 

   operation from memory.

Considerations before LLMs deployment:

- Computation Capability: Support LLM op, mixed 

   precision, and high computational power.

- Memory size/bandwidth: Scaling KV cache (text), 

   multi-tasking (batch size), data movement.

- Harmony: computation and memory capacities 

   should be well aligned w.r.t. LLM requirements.

08

Roofline Model on A6000 GPU

Execution of an operation 
(linear/non-linear) on hardware.

Analysis of Llama-2 7B layers on 
the A6000 GPU from NVIDIA

Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023).
Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

What Kind of Software/Hardware Optimization 
should be used to improve the compute and 

memory bound operations in LLMs?



Software Optimization – Pay More Attention to Attention Layers!

9

- Attention layers in LLMs are associated with 

  quadratic computing complexity.

- Many optimized variants of attention have been 

proposed by exploiting: sparsity, approximation, or 

replacement with attention-free operations.

Xu, Mengwei, et al. "A survey of resource-efficient llm and multimodal foundation models." arXiv preprint arXiv:2401.08092 (2024).
Tornede, Alexander, et al. "Automl in the age of large language models: Current challenges, future opportunities and risks." arXiv preprint arXiv:2306.08107 (2023).



Software Optimization – To Compress or Not to compress

10
Xu, Mengwei, et al. "A survey of resource-efficient llm and multimodal foundation models." arXiv preprint arXiv:2401.08092 (2024).
Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

Quantization is the most used technique 

to deploy LLMs on Mobile Devices.

Quantization reduces both the memory 

footprint and inference time.

Quantization is parametric and finding 

the right recipe is key to optimality.

Evolution of 

Quantization 

Techniques 

for LLM

What and When to quantize?
Less Memory >>> More Efficiency



Software Optimization – Dynamic Model Scaling

11

- Dynamic Scaling is an inference 

strategy that operates depending on 

the input prompt context & difficulty

- Use less computation for easy 

prompts and more computation for 

difficult prompts >> Dynamic Scaling

Han, Yizeng, et al. "Dynamic neural networks: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 44.11 (2021): 7436-7456.
Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

Full Execution 
Equal computing 

loads for easy and 
difficult prompt

Partial Execution 
Depending on 

prompt difficulty, exit 
on the layer with high 

confidence

Partial Execution 
Depending on 

prompt difficulty, use 
less heads and 

neurons

Partial Execution 
Depending on 

prompt difficulty, 
select less experts

Three techniques used:

→ Depth-wise early-exit

→ Width-wise early-exit

→ Mixture-of-experts



Hardware Optimization – Computation Parallelism

12Zeng, Shulin, et al. "FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGA." arXiv preprint arXiv:2401.03868 (2024).
Li, Zhuohan, et al. "Terapipe: Token-level pipeline parallelism for training large-scale language models." International Conference on Machine Learning. PMLR, 2021.

How to map the LLM 

layers (Attention & FFN) 

on the computing devices 

of Hardware devices?

(a) Prefill stage in LLMs | (b) Decode stage in LLMs 
LLM Deployment

Operator 
parallelism
Sub-layer 
per device

Layer 
parallelism
One-layer 
per device

Token 
parallelism
One-token 
per device



Hardware Optimization – Domain-specific and IMC Accelerators

13
Kachris, Christoforos. "A Survey on Hardware Accelerators for Large Language Models." arXiv preprint arXiv:2401.09890 (2024).
https://www.enchargeai.com/technology

- Unlike general-purpose accelerators (CPU & GPU), domain-specific 

accelerators hold a lot of potential for LLM → Attention acceleration

- LLM operators are memory-bounds → high overhead from data movement

- In-Memory-Computing is a promising as memory and computation can be 

   in the same physical arrays → Avoid data movements overhad

https://www.enchargeai.com/technology


Conclusion – Future Directions

14

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

HW
LLM

Efficient LLM

Timeline

Roofline Analysis 

Understand LLM 
Requirements

Scaling Attention

Optimize the Attention 
Mechanism

Model 
Compression and 
Dynamic Scaling

Investigate compression
In-context dynamic scaling

Computation 
Parallelism

Divide-and-Conquer
LLM on Hardware

Domain-specific & 
IMC accelerators

Towards LLM accelerators 

Still
 to

o m
uch to

 be done


