

GHOST DAY Applied Machine Learning Conference

Ø

00110 011000011

100001

0011

1001

01

0100

01

00

110101

01000

01

1001100010

01010001

00

Chasing Efficiency in the Era of Generative-AI and Large Language Models

Halima Bouzidi, PhD **Research Fellow in Trustworthy AI** The Queen's University of Belfast, UK h.bouzidi@qub.ac.uk

GHOST Day: AMLC 2024 05-06 April 2024

Agenda

- Introduction: A Quest for Efficiency
 - Understanding the LLM Landscape
 - LLM Inference Challenges
- Software-Level Optimization
 - Pay More Attention to Attention Layers!
 - To compress or not to compress?
 - Dynamic Model Scaling
- Hardware-Level Optimization
 - Parallel Computing
 - Domain-specific and IMC Accelerators
- Conclusion

LLM is the New Fuel of Today's Digital Landscape

The history of LLMs is built upon advancements in NLP and ML.
Progress in NN architectures, availability of datasets, and computational power are the magic recipe of today's LLMs.

Effective LLMs need more scaling (data, computation, budget) Larger == better performance On-device LLM is the key to enable future generations of smart IoT

When GenAl outgrows Edge/Mobile Hardware Limits

"The exponential growth in LLM applications and complexity has outstripped the hardware scaling capabilities of Moore's law"

"Hardware Technology Scaling is all you Need" However

"Physical and Thermal Limits are your Constraints"

Data from OurWorldinData: https://ourworldindata.org/grapher/artificial-intelligence-parameter-count Data from AMSL's Investor Day Event:

https://leimao.github.io/downloads/blog/2023-04-10-Moore-Law/ASML-Investor-Day-2021.pdf

LLM Architecture and Computing Scaling

The compute has two separate components:

- Linear terms: Vector-matrix multiplication w/ the W matrix (fixed cost per time step)

Attention terms: Matrix-vector multiplicationw/ the K key matrix (scales with # of tokens)

An Example: Llama-2 7B

- Linear terms: 7B MACs per token (1-MAC per parameter)
- Attention and linear costs are approximately equal after ≅ 400 tokens.
- Mobile Performance: on Snapdragon 8 Gen 3,
- Llama-2 7B can be run with 20 token/second

Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024). Llama-2 7B: https://huggingface.co/meta-llama/Llama-2-7b

LLM Architecture and Computing Scaling

The Compute-Memory Dilemma in LLMs

Execution of an operation (linear/non-linear) on hardware.

Analysis of Llama-2 7B layers on the A6000 GPU from NVIDIA

Layer Name	OPs	Memory Access	Arithmetic Intensity	Max Performance	Bound
-			Prefill		
q_proj	69G	67M	1024	155T	compute
k_proj	69G	67M	1024	155T	compute
v_proj	69G	67M	1024	155T	compute
o_proj	69G	67M	1024	155T	compute
gate_proj	185G	152M	1215	155T	compute
up_proj	185G	152M	1215	155T	compute
down_proj	185G	152M	1215	155T	compute
qk_matmul	34G	302M	114	87T	memory
sv_matmul	34G	302M	114	87T	memory
softmax	671M	537M	1.25	960G	memory
norm	59M	34M	1.75	1T	memory
add	8M	34M	0.25	192G	memory
		Ι	Decode		
q_proj	34M	34M	1	768G	memory
k_proj	34M	34M	1	768G	memory
v_proj	34M	34M	1	768G	memory
o_proj	34M	34M	1	768G	memory
gate_proj	90M	90M	1	768G	memory
up_proj	90M	90M	1	768G	memory
down_proj	90M	90M	1	768G	memory
qk_matmul	17M	17M	0.99	762G	memory
sv_matmul	17M	17M	0.99	762G	memory
softmax	328K	262K	1.25	960G	memory
norm	29K	16K	1.75	1T	memory
add	4K	16K	0.25	192G	memory

Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023). Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights," arXiv preprint arXiv:2402.16363 (2024).

The Compute-Memory Dilemma in LLMs

Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023). Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

Software Optimization – Pay More Attention to Attention Layers!

- Attention layers in LLMs are associated with **quadratic** computing complexity.
- Many optimized variants of attention have been proposed by exploiting: **sparsity**, **approximation**, **or replacement** with attention-free operations.

Model	Time	Space
Transformer	$O(T^2d)$	$O(T^2 + Td)$
AFT	$O(T^2d)$	O(Td)
Reformer	$O(T\log Td)$	$O(T\log T + Td)$
Hyena	$O(T\log Td)$	O(Td)
SSM	$O(T\log Td)$	O(Td)
Linear Transformers	$O(Td^2)$	$O(Td + d^2)$
RetNet	O(Td)	O(Td)
RWKV	O(Td)	O(d)

Xu, Mengwei, et al. "A survey of resource-efficient IIm and multimodal foundation models." arXiv preprint arXiv:2401.08092 (2024). Tornede, Alexander, et al. "Automl in the age of large language models: Current challenges, future opportunities and risks." arXiv preprint arXiv:2306.08107 (2023).

Software Optimization – To Compress or Not to compress

Quantization is the most used techniqueto deploy LLMs on Mobile Devices.Quantization reduces both the memoryfootprint and inference time.Quantization is parametric and findingthe right recipe is key to optimality.What and When to quantize?Less Memory >>> More Efficiencyseqlen=10kseqlen=50kseqlen=200k

Xu, Mengwei, et al. "A survey of resource-efficient llm and multimodal foundation models." arXiv preprint arXiv:2401.08092 (2024). Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

Software Optimization – Dynamic Model Scaling

Dynamic Scaling is an inference
strategy that operates depending on
the input prompt context & difficulty
Use less computation for easy
prompts and more computation for
difficult prompts >> Dynamic Scaling

Three techniques used:

- \rightarrow Depth-wise early-exit
- \rightarrow Width-wise early-exit
- \rightarrow Mixture-of-experts

Han, Yizeng, et al. "Dynamic neural networks: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 44.11 (2021): 7436-7456. Yuan, Zhihang, et al. "LLM Inference Unveiled: Survey and Roofline Model Insights." arXiv preprint arXiv:2402.16363 (2024).

Hardware Optimization – Computation Parallelism

Zeng, Shulin, et al. "FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGA." arXiv preprint arXiv:2401.03868 (2024). Li, Zhuohan, et al. "Terapipe: Token-level pipeline parallelism for training large-scale language models." International Conference on Machine Learning. PMLR, 2021.

Hardware Optimization – Domain-specific and IMC Accelerators

- Unlike general-purpose accelerators (CPU & GPU), domain-specific - LLM operators are memory-bounds -- high overhead from data movement accelerators hold a lot of potential for LLM \rightarrow Attention acceleration - In-Memory-Computing is a promising as memory and computation can be in the same physical arrays -> Avoid data movements overhad GPU
 ASIC
 InMemory FPGA 10000 Energon **Traditional Digital Accelerators Current-based Analog IMC** SpAtten (GPU, TPU, FPGA) (Transistors, NVM, Spintronics) ELSA ReTransformer 1000 Problem #1: Bit-by-bit Energy efficiency movement of lots of data Array size limited by 100 reduced SNR iMCAT A3 ATT 10 FTRANS MNNFast NPE Matrix multiply output DFX (compute results over Problem #2: some bits simultaneously) Transformer Prunning Multi-Head Digital MAC Processor Sanger FlexRun (<5-10 TOPS/W) 10 100 1000 SpeedUp

Kachris, Christoforos. "A Survey on Hardware Accelerators for Large Language Models." arXiv preprint arXiv:2401.09890 (2024). https://www.enchargeai.com/technology

Conclusion – Future Directions

Timeline