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Examples of applications

• Social media activity [Far+15]
• Online shopping activity [Cai+18]
• Medical Records [Eng+20]
• Finance [BMM15]
• Earthquakes [Das+23]
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Marked Temporal Point Processes

Marked temporal point processes (MTPPs) [D J03] define a probability distribution
over label event sequences in continuous time.

An MTPP can be characterized by its marked intensity functions, defining the ex-
pected occurrence rate of mark-k events per unit of time, conditional on the history.

Homogeneous Poisson process: λ∗
k(t) = λk
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Marked Temporal Point Processes

Inhomogeneous Poisson process: λ∗
k(t) = λk(t)

Hawkes process: λ∗
k(t) = λk(t) +

∑K
k′=1

∑
{(tj ,kj):tj<t, kj=k′} αk′kβk′ke

−β
k
′
k
(t−tj)
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Marked Temporal Point Processes

The event history until time t:

Ht = {(tj , kj) | tj < t}.

The k-th counting process (k ∈ K):

Nk(t) =

m∑
j=1

1(tj ≤ t ∩ kj = k).

The marked intensity functions (k ∈ K):

λ∗
k(t) = λk(t|Ht) = lim

∆t→0

E[Nk(t+∆t)−Nk(t)|Ht]

∆t
.
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MTPPmodel training

Dataset composed of m events ej = (tj , kj) where tj ∈ [0, T ] and kj ∈ K:
S = {(t1, k1), (t2, k2), . . . , (tm, km)} or S = {(τ1, k1), (τ2, k2), . . . , (τm, km)}.

Negative log-likelihood with λ∗
k(t;θ) for k ∈ K:

L(θ;S) = −
m∑
j=1

log λ∗
kj
(tj ;θ)−

∫ T

0

K∑
k=1

λ∗
k(t;θ)dt.

Negative log-likelihood with f∗(τ, k;θ) = f∗(τ ;θ)p∗(k|τ ;θ):

L(θ;S) = −
m∑
j=1

log f∗(τj ;θ))︸ ︷︷ ︸+ log p∗(kj |τj ;θ)︸ ︷︷ ︸
+ log (1− F ∗(T − tm;θ))︸ ︷︷ ︸,

where F ∗(τ) =
∫ τ
0

∑K
k=1 f

∗(s, k)ds.
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Joint predictive density with |K| = 3
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NeuralMarked Temporal Point Processes

Classical TPPs lack flexibility to capture complex dependencies between past and
future events [ME16].

Neural TPPs leverage neural network flexibility to enhance representation learning
and build highly flexible and fully end-to-end trainable models [Shc+21].

• Neural network architectures: recurrent architectures [Du+16], attention
mechanisms [Zuo+20; Zha+19; Eng+20], non-recurrent architectures [Shc+20].

• Model parametrizations: CIF [OUA19], PDF [SBG20], QF [Tai22]
• Training objectives: least-squares [Yic+16; Xu+17], adverserial learning

[Xia+18], noise constrative estimation [MWE20; GLL18], variational objectives
[Boy+20], reinforcement learning [UDG18]
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NeuralMarked Temporal Point Processes
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NeuralMarked Temporal Point Processes
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NeuralMarked Temporal Point Processes
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NeuralMarked Temporal Point Processes
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The conditional LogNormMix decoder [BB23]

21



The conditional LogNormMix decoder [BB23]
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The conditional LogNormMix decoder [BB23]
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The conditional LogNormMix decoder [BB23]
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Examples of mark and time predictive distributions
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More reliable uncertainty quantificationwith conformal prediction

• Black-box (neural) models provide a “heuristic” notion of uncertainty without
(finite-sample) prediction guarantees.

◦ A reliable uncertainty quantification is essential for optimal decision-making and
safe deployment

• Many sources of uncertainty: model misspecification, noisy and missing data,
etc. See “Sources of Uncertainty in Machine Learning – A Statisticians’ View”
[Gru+23]

• With conformal prediction [VGS05], we can generate distribution-free prediction
regions with finite-sample calibration guarantees from any model.

• We want our prediction sets to be sufficiently sharp to obtain informative
predictions.
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Split conformal prediction algorithm

D = { (hi,yi) }ni=1: a dataset consisting of n exchangeable pairs.

ĝ: a model that provides a heuristic measure of uncertainty for y given h.

The split conformal algorithm transforms any ĝ into a rigorous one [AB21].

1. Split D into two non-overlapping sets, Dtrain and Dcal with Dtrain ∪ Dcal = D.
2. Train the model with the observations in Dtrain, to obtain ĝ.
3. Use ĝ to define a non-conformity score function s (h,y) ∈ R

◦ It assigns larger value to worse agreement between h and y.
4. Compute the calibration scores using the observations in Dcal:

{ si }|Dcal|
i=1 := { s (h,y) : (h,y) ∈ Dcal }
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Split conformal prediction algorithm

6. Compute the 1− α empirical quantile of these calibration scores:

q̂ = Quantile
(
s1, ..., s|Dcal| ∪ {∞ } ; ⌈(|Dcal|+ 1)(1− α)⌉

|Dcal|

)
.

7. For hn+1, use q̂ to construct a prediction region for yn+1 with 1− α coverage:

R̂y(hn+1) = { y ∈ Y : s(hn+1,y) ≤ q̂ } .

P
(
yn+1 ∈ R̂y(hn+1)

)
= P(s(hn+1, τn+1) ≤ q̂)

quantile lemma
↑
≥ 1− α

Quantile Lemma. If S1, . . . , Sn, Sn+1 are exchangeable variables, then

P {Sn+1 ≤ Quantile (1− α; {Si}ni=1 ∪ {∞})} ≥ 1− α, ∀α ∈ (0, 1).

If ties between S1, . . . , Sn, Sn+1 occur with probability zero, then the rhs is 1−α+ 1
n+1 .
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A very active area of research

Conformal prediction: Vovk, Gammerman, and Shafer [VGS05]
Conformal regression: Lei, G’Sell, Rinaldo, Tibshirani, and Wasserman [Lei+18], Romano,

Patterson, and Candes [RPC19], and Sesia and Romano [SR21]
Conformal classification: Romano, Sesia, and Candès [RSC20]
Conformal density estimation: Izbicki, Shimizu, and Stern [ISS22]
Conditional coverage: Foygel Barber, Candès, Ramdas, and Tibshirani [Foy+20] and Gibbs,

Cherian, and Candès [GCC23]
Conformal time series forecasting: Stankeviciute, M Alaa, and Schaar [SMS21], Lin, Trivedi,

and Sun [LTS22], and Angelopoulos, Candes, and Tibshirani [ACT23]
Conformal spatial prediction: Mao, Martin, and Reich [MMR20]
Beyond exchangeability: [Bar+22; Tib+19]
Multi-response: [FBR23; LRW13]
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Conformal neural TPPs
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Conformal neural TPPs
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Conformal neural TPPs

Challenge I. The events in a sequence are not exchangeable (temporal dependence).
• In the neural TPP literature, we often assume the sequences are exchangeable.
• A similar setting considered in conformal time series forecasting [SMS21]
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Conformal neural TPPs

Challenge II. We need to generate a joint prediction region for a bivariate response,
accommodating both a continuous and a categorical response.

Given hn+1 and α ∈ (0, 1), our aim is to construct an informative, distribution-free
joint prediction region R̂τ,k(hn+1) ∈ R+ × K for the pair (τn+1, kn+1) with finite-
sample marginal coverage, i.e.

P((τn+1, kn+1) ∈ R̂τ,k(hn+1)) ≥ 1− α.

We will explore two approaches:
1. A naive yet valid method combining individual prediction sets for τn+1 and kn+1.
2. An approach based on the highest density regions (HDRs) of the joint

predictive density of (τn+1, kn+1).
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Individual prediction regions
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Naive bivariate prediction regions

We construct a 1 − α bivariate prediction region for (τn+1, kn+1) by combining indi-
vidual predictions regions R̂τ (hn+1) and R̂k(hn+1), each with coverage 1− α/2.
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R̂τ,k(hn+1)

= R̂τ (hn+1)× R̂k(hn+1)

= {(τ ′, k′
)|τ ′ ∈ R̂τ (hn+1), k

′ ∈ R̂k(hn+1)}
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Naive bivariate prediction regions

By the union bound, we have:

P((τn+1, kn+1) ∈ R̂τ (hn+1)× R̂k(hn+1))

= P(τn+1 ∈ R̂τ (hn+1) ∩ kn+1 ∈ R̂k(hn+1))

= 1− P(τn+1 ̸∈ R̂τ (hn+1) ∪ kn+1 ̸∈ R̂k(hn+1))︸ ︷︷ ︸
≤α/2+α/2

≥ 1− α.

However, this method can be overly conservative, resulting in large and inflexible pre-
diction regions. Indeed, the joint prediction region generated by this approach yields the
same prediction interval for the arrival time across all selected marks.
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Bivariate HDRs

The HDR of f̂(τ, k|hn+1) with nominal coverage level 1− α is defined as:

HDR(1− α|hn+1) =
{
(τ, k)

∣∣∣ f̂(τ, k|hn+1) ≥ z1−α

}
,

where
z1−α = sup

{
z′
∣∣∣ P(f̂(τ, k|hn+1) ≥ z′) ≥ 1− α

}
.

0.0
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Bivariate HDRs

• With the joint predictive density, we account for the dependence between τ
and k.

◦ We exclude unlikely combinations of the two variables while maintaining the
pre-specified coverage level.

• With multimodal distributions, an HDR is a union of intervals collectively
shorter than a single interval with the same coverage level.

• The oracle HDR has the useful property of generating the smallest possible
region that guarantees conditional coverage.

The joint HDR can be expressed as
R̂τ,k(hn+1) = HDR(1− α|hn+1) =

⋃
k′∈R̂k(hn+1)

{(τ ′, k′)|τ ′ ∈ R̂(k′)
τ (hn+1)}

where
R̂k(hn+1) = {k′|∃ τ ∈ R+ : f̂(τ, k′|hn+1) ≥ z1−α} and R̂(k)

τ (hn+1) = {τ ′|f̂(τ ′, k|hn+1) ≥ z1−α}.

40



Conformal bivariate HDRs

By definition1, we have

HDR(q̂) =
{
y | f̂(y) ≥ zq̂

}
,where zq̂ = sup

{
z′ | P(f̂(y) ≥ z′) ≥ q̂

}
=
{
y | Fz(f̂(y)) ≥ 1− q̂

}
,

This implies that

yn+1 ∈ HDR(q̂) ⇐⇒ Fz(f̂(yn+1)) ≥ 1− q̂ ⇐⇒ 1− Fz(f̂(yn+1))︸ ︷︷ ︸
HPD(yn+1)

≤ q̂,

where

HPD(y) = 1− Fz(f̂(y)) = P(z ≥ f̂(y)) =

∫
{ y′|f̂(y′)≥f̂(y) }

f̂(y′)dy′.

1To simplify notations, we remove the dependence on h and write y = (τ, k).
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Conformal bivariate HDRs

This is a generalization of the univariate HPD-split method [ISS22] for bivariate re-
sponses, denoted C-HDR.
C-HDR is based on the following non-conformity score:

sC-HDR(h, (τ, k)) = HPD(τ, k|h) =
∑
k′∈K

∫
{ τ ′ | f̂(τ ′,k′|h)≥f̂(τ,k|h) }

f̂(τ ′, k′|h)dτ ′,

where HPD(τ, k|h) calculates the probability coverage of pairs (τ ′, k′) having a higher
density than (τ, k).
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Examples of joint predictions regions
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Experimental setup

#Seq. #Events Mean Length Max Length Min Length #Marks
LastFM 856 193441 226.0 6396 2 50
MOOC 7047 351160 49.8 416 2 50
Reddit 4278 238734 55.8 941 2 50

Retweets 12000 1309332 109.1 264 50 3
Stack Overflow 7959 569688 71.6 735 40 22

The sequences are randomly split into Dtrain/Dcal/Dtest with sizes 75%, 15% and 10%. This
procedure is repeated 5 times. For each dataset, the model is trained using Dtrain, and the
results are averaged over the 5 Dtest splits.
We present the results for the CLNM nerual TPP model, for α = 0.2. We consider both
heuristic (H-) and conformal (C-) methods.
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Heuristic and conformal methods for individual regions

Quantile regression (QR):
R̂τ,H-QR(hn+1) = [Q̂τ (α|hn+1), Q̂τ (1− α|hn+1)]

R̂τ,C-QR(hn+1) = [Q̂τ (α|hn+1)− q̂, Q̂τ (1− α|hn+1) + q̂]

Quantile regression left (QRL):
R̂τ,H-QRL(hn+1) = [0, Q̂τ (1− α|hn+1)]

R̂τ,C-QRL(hn+1) = [0, Q̂τ (1− α|hn+1) + q̂]

Univariate Highest Density Regions (HDR-T):

R̂τ,H-HDR-T(hn+1) = {τ |f̂(τ |hn+1) ≥ z1−α}, z1−α = sup
{
z′
∣∣∣ P(f̂(τ |hn+1) ≥ z′) ≥ 1− α

}
R̂τ,C-HDR-T(hn+1) = {τ |f̂(τ |hn+1) ≥ zq̂}, zq̂ = sup

{
z′
∣∣∣ P(f̂(τ |hn+1) ≥ z′) ≥ q̂

}
(Regularized) adaptive prediction sets ((R)APS):

R̂k,H-(R)APS(hn+1) =
{
k′ ∈ K : s(R)APS(hn+1, k

′) ≤ 1− α
}

R̂k,C-(R)APS(hn+1) =
{
k′ ∈ K : s(R)APS(hn+1, k

′) ≤ q̂
}
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Heuristic and conformal methods for bivariate regions

• The naive method which combines individual prediction regions
◦ C-QRL-RAPS : C-QRL for R̂τ (hn+1) and C-RAPS for R̂k(hn+1).
◦ C-HDR-RAPS : C-HDR-T for R̂τ (hn+1) and C-RAPS for R̂k(hn+1).

• The conformal highest density regions method (C-HDR) based on the joint
density of the arrival time and the mark.

• The heuristic counterparts, denoted as H-QRL-RAPS, H-HDR-RAPS and
H-HDR.
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Evaluationmetrics

Marginal coverage:

MC = P̂Dtest

(
yi ∈ R̂y(hi)

)
=

1

|Dtest|

|Dtest|∑
i=1

1

[
yi ∈ R̂y(hi)

]
.

Average length:

Length =
1

|Dtest|

|Dtest|∑
i=1

|R̂y(hi)|.

Geometric average of the lengths2:

G. Length =
1

|Dtest|

|Dtest|∑
i=1

log(|R̂y(hi)|+ ϵ)3,

. 2to decrease the weight of large lengths and increase the weight of small lengths
3ϵ is a small value to handle the case where |R̂y(hi)| = 0
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Evaluationmetrics

Worst slab coverage (WSC, [CGD21]), the coverage conditionally to the worst slab v ∈ Rdh :

WSC = min
vj∈Sd−1

inf
a<b

{
P̂Dtest

(
yi ∈ R̂y(hi)| a ≤ v⊺hi ≤ b

) ∣∣∣ P̂Dtest(a ≤ v⊺hi ≤ b) ≥ δ
}
,

each containing at least a proportion δ of the total mass, where 0 < δ ≤ 1.

Conditional coverage error (CCE), the average coverage error over different clusters A1, . . . , AJ :

CCE =
1

|Dtest|

|Dtest|∑
i=1

J∑
j=1

(
P̂Dtest

(
yi ∈ R̂y(hi)

∣∣∣ hi ∈ Aj

)
− (1− α)

)2
,

where the clusters are determined by the k-means++ algorithm using the 2-Wasserstein distance
function to cluster instances whose HPD values Z are similary distributed [ISS22]:

dZ(ha,hb) =

(∫ 1

0

∣∣F−1
Z (u | ha)− F−1

Z (u | hb)
∣∣2 du) 1

2

.
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Marginal coverage for different coverage levels
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• Heuristic methods undercover for large coverage levels
• Combining individual regions leads to overcoverage
• C-HDR obtains the right coverage at all coverage levels
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Results for the bivariate prediction regions
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Summary

V. Dheur, T. Bosser, S. Ben Taieb. Distribution-Free Conformal Joint Prediction Regions
for Neural Marked Temporal Point Processes (2024). arxiv.org/abs/2401.04612

• We want to generate distribution-free, calibrated, and informative bivariate
prediction regions for the arrival time and mark from neural TPP models.

• The naive approach which combines individual prediction sets can be overly
conservative, resulting in large and inflexible prediction regions.

• We proposed a conformal approach based on HDRs which efficiently excludes
unlikely combinations of the two variables while maintaining the pre-specified
coverage level.

• Future work
◦ Relax the assumption of exchangeable sequences using block structures.
◦ Other stronger (achievable) coverage criteria.
◦ Continuous or/and multivariate mark, and spatio-temporal marked processes
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TPPmodel training

From λ∗
k(t), one can compute the joint density of (inter-)arrival times and marks,

f∗(τ, k) = λ∗
k(tj−1 + τ)(1− F ∗(τ)) = λ∗

k(tj−1 + τ) exp
(
−

K∑
k=1

Λ∗
k(t)

)
,

where F ∗(τ) =
∫ τ
0

∑K
k=1 f

∗(s, k)ds and Λ∗
k(t) =

∫ t
tj−1

λ∗
k(s)ds.

Given a sequence S of n events observed in [0, T ], and λ∗
k(t;θ), the parameters θ can

be estimated by MLE, i.e. by minimizing the negative log-likelihood (NLL):

L(θ;S) =
m∑
j=1

log λ∗
k(tj ;θ) +

∫ T

0

K∑
k=1

λ∗
k(t;θ)dt.

If f∗(τ, k;θ) = f∗(τ ;θ)p∗(k|τ ;θ), the NLL is

L(θ;S) =
m∑
j=1

[log f∗(τj ;θ)) + log (p∗(kj |τj ;θ))] + log (1− F ∗(T − tm;θ)).
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The conditional LogNormMixmodel

The conditional LogNormMix model [BB23] computes

f̂(τ, k|h) = f̂(τ |h)p̂(k|τ,h),

where

f̂(τ |h) =
C∑

c=1

p(c|h) 1

τσc

√
2π

exp
(
− (log τ − µc)

2

2σ2
c

)
,

with

p(c|h) = Softmax
(
Wph+ bp

)
c
,

µc = (Wµh+ bµ)c,

σc = exp(Wσh+ bσ)c,

and
p̂(k|τ,h) = Softmax

(
W2ReLU

(
W1[h||lt] + b1

)
+ b2

)
k
.
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NeuralMarked Temporal Point Processes

A neural MTPP model can be decomposed into three components:
1. An event encoder: For each ej = (tj , kj) ∈ S, generate lj ∈ Rde .
2. A history encoder: For each ej , generate hj ∈ Rdh from past event encodings

{lj−1, ..., lj−p} where p is the lag.
3. A decoder: For a query time t > tj , parametrize λ̂k(t|hj) or f̂(τ, k|hj) using hj

and lt for all k ∈ K.
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Individual prediction regions

For both inter-arrival times and marks, our goal is to construct prediction regions that
achieve finite-sample marginal coverage at level 1− α.

Given a dataset D = {(hi, yi)}ni=1 where yi = τi or yi = ki, and a new test input hn+1,
the objectives are as follows:

1. Inter-arrival times: Construct a prediction region R̂τ (hn+1) ⊆ R+ for τn+1,
ensuring

P(τn+1 ∈ R̂τ (hn+1)) ≥ 1− α. (1)

2. Marks: Generate a prediction set R̂k(hn+1) ⊆ K for kn+1, guaranteeing

P(kn+1 ∈ R̂k(hn+1)) ≥ 1− α. (2)
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Prediction regions for the arrival time

If Q̂τ (α|h) is the α-conditional quantile estimated by quantile regression (QR) on D,
we can construct the following equal-tailed prediction interval:

R̂τ,QR(hn+1) = [Q̂τ (α/2|hn+1), Q̂τ (1− α/2|hn+1)],

Conformalized Quantile Regression (CQR) [RPC19] computes an adjusted interval

R̂τ,CQR(hn+1) = [Q̂τ (α/2|hn+1)− q̂, Q̂τ (1− α/2|hn+1) + q̂],

which satisfies marginal coverage at level 1− α, i.e.

P(τn+1 ∈ R̂τ,CQR(hn+1)) ≥ 1− α.
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ConformalizedQuantile Regression

We can write

τn+1 ∈ R̂τ,CQR(hn+1)

⇐⇒ τn+1 ∈ [Q̂τ (α/2|hn+1)− q̂, Q̂τ (1− α/2|hn+1) + q̂]

⇐⇒ Q̂τ (α/2|hn+1)− q̂ ≤ τn+1 and τn+1 ≤ Q̂τ (1− α/2|hn+1) + q̂

⇐⇒ Q̂τ (α/2|hn+1)− τn+1 ≤ q̂ and τn+1 − Q̂τ (1− α/2|hn+1) ≤ q̂

⇐⇒ max
{
Q̂τ (α/2

∣∣∣ hn+1)− τn+1, τn+1 − Q̂τ (1− α/2|hn+1)
}

︸ ︷︷ ︸
sCQR(hn+1,τn+1)

≤ q̂

The finite-sample coverage guarantee is obtained using the quantile lemma:

P(τn+1 ∈ R̂τ (hn+1) = P(sCQR(hn+1, τn+1) ≤ q̂) ≥ 1− α
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ConformalizedQuantile Regression for Left intervals

In practice, the arrival times often show a skewed distribution with a significant con-
centration of probability mass close to 0.
By construction, CQR does not encompass these high density regions, potentially leading
to large predictions intervals.
We consider Conformalized Quantile Regression for Left intervals (CQRL) approach
that defines an asymmetric prediction interval for τn+1

R̂τ,CQRL(hn+1) = [0, Q̂τ (1− α|hn+1) + q̂], (3)

where the nonconformity score is

sCQRL(h, τ) = τ − Q̂τ (1− α|h). (4)
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Prediction sets for themark

If p̂(·|h) is the mark conditional PMF, reguralized adaptive prediction sets (RAPS) [Ang+22]
defines the following non-conformity score:

sRAPS(h, k) =
∑

k′:p̂(k′|h)≥p̂(k|h)

p̂(k′|h) + u · p̂(k|h) + γ (o(k)− kreg)
+
,

where
• u is a uniform random variable handling discrete jumps in the cumulative sum of p̂(k|h).
• o(k) = | { k′ ∈ K : p̂(k′ | h) ≥ p̂(k|h) } | is the ranking of the observed mark k among the

probabilities in p̂(·|h).
• (x)+ denotes the positive part of x, and γ, kreg ≥ 0 are regularization parameters.

We also consider the unreguralized version of the previous method, called adaptive prediction
sets (APS) [RSC20], i.e. γ = 0.
We construct the following prediction set for kn+1:

R̂k(hn+1) =
{
k′ ∈ K : s(R)APS(hn+1, k

′) ≤ q̂
}
,
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Results for the arrival time prediction regions
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Results for themark prediction sets
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