

GHOST DAY

Applied Machine Learning Conference

Nash Learning from human feedback

Michal Valko

Plan for April 6th, 2024

- Algorithmic alignment
- Pairwise preference over ELO scores
- Better than best response
- NashLLMs
- Offline alignment and IPO
- Discussion, Qs, What's next?

Traditional three phases recipe

🌳 © Borealis Al

Pairwise preference over ELO scores

$$\mathbb{E}_{(y_w,y_l)\sim\mu}\left[f\left(r_\phi(y_w)-r_\phi(y_l)\right)\right]$$

Learn a preference model $\mathcal{P}(y \succ y' | x)$

- Initialise it with a LLM prompted:
 "Given this prompt 'x' and two responses 'y1' and 'y2', which one do you prefer?"
- Trained by SL with preference human data

Identity Preference Optimization

with Mo Azar, Bilal Piot, Daniel Guo, Mark Rowland, Daniele Calandriello, Rémi Munos

antisymmetric:
$$\mathcal{P}(y \succ y'|x) = 1 - \mathcal{P}(y' \succ y|x)$$

f is a (deterministic) absolute scoring function

$$\mathcal{P}(y \succ y'|x) = \mathbb{E}_{Z \sim \nu} \left[\mathbb{I}\{f(x, y, Z) \succ f(x, y', Z)\} \right]$$

Probability of winning:

$$\mathcal{P}(\pi \succ \pi' | x) \stackrel{\text{def}}{=} \mathbb{E}_{y \sim \pi(\cdot | x), y' \sim \pi'(\cdot | x)} \left[\mathcal{P}(y \succ y' | x) \right]$$

Probability of winning

$$\mathcal{P}(\pi \succ \pi' | x) \stackrel{\text{def}}{=} \mathbb{E}_{y \sim \pi(\cdot | x), y' \sim \pi'(\cdot | x)} \left[\mathcal{P}(y \succ y' | x) \right]$$

Nash Equilibrium

$$rg\max_{\pi} \min_{\pi'} \mathbb{E}_{x,y \sim \pi,y' \sim \pi'} ig[\mathcal{P}(y \succ y' | x) ig]$$

 ∞

$\mathcal{P}(y\succ y')$	$ y = y_1$	$ y = y_2$	$y = y_3$
$y' = y_1$	1/2	9/10	2/3
$y' = y_2$	1/10	1/2	2/11
$y' = y_3$	1/3	9/11	1/2

- Can be captured by **BT:** R(y1) = 0, R(y2) = log 9, and R(y3) = log 2
- Unconstrained optimization for maximum reward: y2 = (0, 1, 0)
- Unconstrained optimization for best preference: **y2 = (0, 1, 0)**
- Constrained $\pi(y1) = 2\pi(y2)$ for maximum reward: (2/3, 1/3, 0) = P
- Constrained $\pi(y1) = 2\pi(y2)$ for best preference: (0, 0, 1) = R

 $\mathbb{E}_{y \sim \pi_R^*}[R(y)] = 0 \times 2/3 + \log(9) \times 1/3 > \log(2) = \mathbb{E}_{y \sim \pi_P^*}[R(y)]$

$$\mathcal{P}(\pi_{\mathcal{P}}^* \succ \pi_R^*) = \mathcal{P}(y_3 \succ y_1) \times 2/3 + \mathcal{P}(y_3 \succ y_2) \times 1/3 = 50/99 > 1/2.$$

Even for BT: "best response" and "probability of winning" differ!

Why stray away from Bradley Terry1. Diverse human preferences

Example:

- 3 types of humans with respective preferences P1, P2, P3
- Each type as has a different preference between action y1, y2, y3
- **BT** will select one action y1 deterministically
- Nash will selected a mixture policy proportionally

BT is also unstable: One datapoint can radically change the policy

Why stray away from Bradley Terry2. Limited expressivity

Non transitivity

Example: Non-transitive dice (Gardner, 1970)

- We construct: $P(\pi 1 > \pi 2) > \frac{1}{2}$, $P(\pi 2 > \pi 3) > \frac{1}{2}$, $P(\pi 3 > \pi 1) > \frac{1}{2}$
- $\pi 1 = U(\{2, 4, 9\}), \pi 2 = U(\{1, 6, 8\}), \text{ and } \pi 3 = U(\{3, 5, 7\})$

$$\mathcal{P}(\pi_1 \succ \pi_2) = \mathcal{P}(\pi_2 \succ \pi_3) = \mathcal{P}(\pi_3 \succ \pi_1) = 5/9$$

BT is also nonaditive: Bertrand et al. (2023)

Why stray away from Bradley Terry 3. Sensitivity to the sampling distribution

A reward model depends on the data distribution:

$$r^{\pi} \stackrel{\text{def}}{=} \arg \max_{\substack{r(\cdot,\cdot) \\ y, y' \sim \pi(\cdot|x) \\ Z \sim \nu}} \mathbb{E}_{\substack{x \sim \rho \\ Z \sim \nu}} \left[\log \left(\sigma(r(x, y_w^Z) - r(x, y_l^Z)) \right) \right]$$

Whereas a preference model essentially* does not:

$$\mathcal{P}^* \stackrel{\text{def}}{=} \arg \max_{\substack{\mathcal{P}(\cdot \succ \cdot | \cdot) \\ y' \sim \pi(\cdot | x) \\ z \sim \nu}} \mathbb{E}_{\substack{x \sim \rho \\ y' \sim \pi'(\cdot | x) \\ z \sim \nu}} \left[\log \mathcal{P}(y_w^Z \succ y_l^Z | x) \right]$$

essentially* = infinite amount of data, no approximation

Why stray away from Bradley Terry4. Data comes from human pairwise preferences

Empirical argument: fits better

 ∞

NashLLMs

NashLLM: Preference-based policy gradient for RLHF

Google DeepMind

Nash Learning from Human Feedback

Rémi Munos^{*,1}, Michal Valko^{*,1}, Daniele Calandriello^{*,1}, Mohammad Gheshlaghi Azar^{*,1}, Mark Rowland^{*,1}, Daniel Guo^{*,1}, Yunhao Tang^{*,1}, Matthieu Geist^{*,1}, Thomas Mesnard¹, Andrea Michi¹, Marco Selvi¹, Sertan Girgin¹, Nikola Momchev¹, Olivier Bachem¹, Daniel J. Mankowitz¹, Doina Precup¹ and Bilal Piot^{*,1} ^{*}Equal contributions, ¹Google DeepMind

NashLLM: Nash Learning from Human Feedback

Learn a preference model

 $\mathcal{P}(y \succ y' | x)$

- Initialise it with a LLM prompted:
 "Given this prompt 'x' and two responses 'y1' and 'y2', which one do you prefer?"
- Trained by SL with preference human data

Compute the Nash equilibrium

- $rg\max_{\pi} \min_{\pi'} \mathbb{E}_{x,y \sim \pi, y' \sim \pi'} ig[\mathcal{P}(y \succ y' | x) ig]$
- Find policy that generates responses preferred over alternative policies
- Nash-MD algorithm: improve by playing against a mixture between current and past policies

games

trees

self-improvement

use improved model to collect better data

Solving imperfect information games

Scale

replay buffer

computation only along trajectories

A recipe for success in optimal play

Self-play with **follow-the-regularized leader**

Loss estimate

We do not have full information

Regularizer

We can stray away

Balancing

Spent effort where it matters

Magic Sauce

Craft the the interplay with no tree

Quicky mention the first three ingredients

Focus on the magic

10 years to the solution							Google DeepMind @GoogleDeepMind Do you epicy playing poker but struggle to play well?					
							The DeepRL team and collaborators tackled this problem using the Implicit eXploration Online Mirror Descent (IXOMD) algorithm: dpmd.ai/IXOMD (1/)					
Kocák et. al 20 Valko et al 20 Lattimore and	IX - Implicit eXploration Kocák et. al 2014 Valko et al 2016, Lattimore and Szepesvári 2020 Monte-Carlo CFR Lanctot et al. 2019						Peeking once is enough Bai et. al 2022 Regularization for Stratego Perolat, de Vylder, et. al 2022					
2014 2	Dilated entropy Kroer et al. 2015 High-probability Neu 2015	2017	2018 First-(Kroer et	2019 order metho	20 Ids	1st slow r Farina and Sa Balanced Farina et al. S Using IX transitior Jin et al. 2020	2021 ate results andholm (2020- l strategy a (2020) for unknov	2022 -21) VN Cong & tea "Ada gam	2023 Demis Hassabi @demishassabi grats to @Google am on the Outsta pting to game tre es" helps answe	2024 s S DeepMind's Remi Mu anding Paper Award a ees in zero-sum impe r: how do you make th	Inos, @misova t @ICMLConfl rfect informa ne best move	

...

Back to NashLLM: RLHF vs NLHF algorithmically

$$abla \log \pi(a|x) \Big(R - V(x) \Big)$$

We are after: Policy preferred by humans

New criterion: Maximise the probability of $\arg \max_{\pi} \min_{\pi'} \mathbb{E}_{x,y \sim \pi,y' \sim \pi'} \left[\mathcal{P}(y \succ y'|x) \right]$ producing a preferred answer

Unexpected benefit: Variance reduction for free!

NashLLM: Addressing reward hacking

The regularized preference between actions $y \sim \pi(\cdot|x), y' \sim \pi'(\cdot|x)$ is defined as

$$\mathcal{P}_{\tau}^{\pi,\pi'}(y \succ y'|x) \stackrel{\text{def}}{=} \mathcal{P}(y \succ y'|x) - \tau \log \frac{\pi(y|x)}{\mu(y|x)} + \tau \log \frac{\pi'(y'|x)}{\mu(y'|x)},$$

and we define accordingly the KL-regularized preference between policies:

$$\begin{aligned} \mathcal{P}_{\tau}(\pi \succ \pi') &\stackrel{\text{def}}{=} & \mathbb{E}_{x \sim \rho, y \sim \pi(\cdot \mid x), y' \sim \pi'(\cdot \mid x)} \left[\mathcal{P}_{\tau}^{\pi, \pi'}(y \succ y' \mid x) \right] \\ & = & \mathcal{P}(\pi \succ \pi') - \tau \text{KL}_{\rho}(\pi, \mu) + \tau \text{KL}_{\rho}(\pi', \mu), \end{aligned}$$

Unexpected benefits:

- Regularized NE is unique!
- Can get fast convergence in distribution!
- Get last iterate convergence!

NashLLM: Self-improvement

Construct the preference model giving pairwise reward w/@piot and the RLX5 team

 $R(x,a,a') = \mathbb{P}_{h \sim \mathcal{H}}(ext{human} \ h ext{ prefers } a ext{ over } a'|x)$

Compute the Nash equilibrium

 $rg\max_{\pi} \min_{\pi'} \mathcal{P}(\pi > \pi'), \quad ext{where:} \quad \mathcal{P}(\pi > \pi') = \mathbb{E}_{x, a \sim \pi, a' \sim \pi'}[R(x, a, a')]$

Step 1: Given the base policy π_0 find a preferred policy π_1 **Step 2:** Given policies π_0 and π_1 find a policy π_2 preferred over π_0 and π_1 **Step 3:** Given π_0 and π_1 and π_2 find a policy π_3 preferred over π_0 and π_1 and π_2 ...

End: Finds a policy π_{NASH} preferred over all

NashMD in LLMs

Full NashMD asks for best-response (BR) in every step

$$\pi_{t+1} = \arg \max_{\pi} \left[\eta \mathcal{P}(\pi > \pi_t) - \mathrm{KL}(\pi, \pi_t^{\mu}) \right]$$

PRASHMD-PG: follow the gradient - note the difference in the KL!

$$abla_ heta \log \pi_ heta(y|x) \left[\mathcal{P}(y \succ y'|x) - rac{1}{2}
ight] - au
abla_ heta \mathrm{KL}(\pi_ heta(\cdot|x), \pi_{ref}(\cdot|x))$$

y is generated from the current policy
 y' is generated from a (geometric) mixture between the current policy and a past checkpoint (such as the initial SFT policy):

$$y' \sim \pi^{eta}_{ heta}(\cdot|x) \propto (\pi_{ heta}(\cdot|x))^{1-eta}(\pi_{ref}(\cdot|x))^{eta}$$

Experiment on a text summarizing task

Train preference model (T5X-L models) on TL;DR database, then compute the Nash using several methods: Self-Play, Nash-MD, Nash-EMA, Best-Response.

\mathcal{P}^*	SFT	RLHF	SP	MD1	MD2	MD3	MD4	MD5	MD6	BR	EMA1	EMA2	EMA1*	EMA2*
SFT	0.500	0.990	0.983	0.982	0.989	0.987	0.985	0.982	0.965	0.943	0.970	0.961	0.977	0.980
RLHF	0.010	0.500	0.489	0.598	0.519	0.561	0.501	0.436	0.284	0.148	0.468	0.320	0.477	0.510
SP	0.017	0.511	0.500	0.592	0.504	0.545	0.499	0.451	0.310	0.211	0.445	0.362	0.464	0.488
MD1	0.018	0.402	0.408	0.500	0.425	0.470	0.369	0.362	0.238	0.163	0.391	0.270	0.400	0.447
MD2	0.011	0.481	0.496	0.575	0.500	0.513	0.491	0.434	0.298	0.196	0.460	0.351	0.430	0.496
MD3	0.013	0.439	0.455	0.530	0.487	0.500	0.484	0.408	0.273	0.187	0.429	0.323	0.413	0.472
MD4	0.015	0.499	0.501	0.631	0.509	0.516	0.500	0.428	0.265	0.161	0.468	0.358	0.437	0.503
MD5	0.018	0.564	0.549	0.638	0.566	0.592	0.572	0.500	0.329	0.210	0.532	0.389	0.518	0.539
MD6	0.035	0.716	0.690	0.762	0.702	0.727	0.735	0.671	0.500	0.342	0.652	0.548	0.651	0.691
BR	0.057	0.852	0.789	0.837	0.804	0.813	0.839	0.790	0.658	0.500	0.743	0.640	0.752	0.774
EMA1	0.030	0.532	0.555	0.609	0.540	0.571	0.532	0.468	0.348	0.257	0.500	0.381	0.480	0.556
EMA2	0.039	0.680	0.638	0.730	0.649	0.677	0.642	0.611	0.452	0.360	0.619	0.500	0.585	0.659
EMA1*	0.023	0.523	0.536	0.600	0.570	0.587	0.563	0.482	0.349	0.248	0.520	0.415	0.500	0.555
EMA2*	0.020	0.490	0.512	0.553	0.504	0.528	0.497	0.461	0.309	0.226	0.444	0.341	0.445	0.500

Table 1. PaLM 2 preference $\mathcal{P}^*(\pi_c \succ \pi_r)$ model between column policy π_c against row policy π_r .

https://arxiv.org/abs/2312.00886

Human Alignment with RLHF

∞

Offline pipeline

 \bigotimes

PRACTICAL Reasons why get away from BT

Transitivity and additivity

🌳 Infinities

$$p(y \succ y'|x) = \sigma(r(x,y) - r(x,y'))$$

Nonlinearity treats stuff differently

No comparison at all for some y

Unnecessary non-linearities

Close-form HEDGE solution

Root-finding problems. Let $g(y) = \mathbb{E}_{y' \sim \mu}[\Psi(p^*(y \succ y'))]$. Then we have $\pi^*(y) \propto \pi_{\mathrm{ref}}(y) \exp(\tau^{-1}g(y))$. (9)

"Infinities ignore SFT" and make model unaligned/unsafe

Nonlinearity bizardly rescales

Solution: Replace non-linearity with identity

General Preference Objective

Algorithm 1 Sampled IPO

Require: Dataset D of prompts, preferred and dispreferred generations x, y_w and y_l , respectively. A Identity Preference Optim 1: Define reference policy π_{ref}

$$h_{\pi}(y,y',x) = \log\left(rac{\pi(y|x)\pi_{ ext{ref}}(y'|x)}{\pi(y'|x)\pi_{ ext{ref}}(y|x)}
ight)$$

2: Starting from $\pi = \pi_{ref}$ minimize

$$\mathbb{E}_{(y_w,y_l,x)\sim D}\left(h_\pi(y_w,y_l,x)-rac{ au^{-1}}{2}
ight)^2$$

$$\min_{\pi} \mathbb{E}_{(y^+, y^-) \sim \text{Dataset}} \left[\underbrace{\text{LR}_{\pi}(y^-, y^+)}_{\text{Policy optimization}} + \tau \underbrace{\left[\text{LR}_{\pi}(y^-, y^+) - \text{LR}_{\pi_{\text{ref}}}(y^-, y^+)\right]^2}_{\text{Policy regularization}} \right],$$

 y^+ : preferred generation y^- : dispreferred generation

 $\operatorname{LR}_{\pi}(y^{-}, y^{+}) = \log\left(\frac{\pi(y^{-})}{\pi(y^{+})}\right)$ The log-lhood ratio iPO loss is equivalent to preference objective!!

- DPO can ignore regularization
 - for deterministic (or nearly deterministic) preferences become very large (infinite)
 - o catastrophic overfitting in practice since we have only 1 or few data point from each context
- DPO assume there exists an underlying reward model (Bradley-Terry assumption)
 - It doesn't cover non-transitive/non-symmetric/non-additive preferences
 - Real-world is not Bradley Terry!

Many more open questions!

Michal Valko https://misovalko.github.io/

- Offline/IPO-ish NashMD
- Online IPO / dependent data distribution
- Join SFT + RL fine-tuning
- Alignment in pretraining already
- IPO Robustification (adversarial alignment)
- Adapting fast fine-tuning and retuning
- Non-linear trajectory reward for fine-grained HF
- General non-pairwise, conversational

GHOST DAY

Applied Machine Learning Conference